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Stochastic mechanics of Abelian lattice theories 
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CFMC, Instituto Nacional de Investigafio Cientifica, AV Gama Pinto 2, 1699 Lisboa 
Codex, Portugal 

Received 7 October 1986, in final form 27 Ju l )  1987 

Abstract. A stochastic equation for lattice theories is written, which describes a Markov 
process on a space lattice evolving in (stochastic) time. At the cost of requiring the 
construction of the drift function, this reduces one dimension in numerical simulations, 
as compared to Monte Carlo methods. The drift can be obtained either from the asymptotic 
solution of an auxiliary equation or  from a ground state ansatz. I t  i s  shown that for Abelian 
theories a drift can be constructed from ground state ansatze which are exact eigenstates 
of Hamiltonians with the same continuum limit as the Kogut-Susskind Hamiltonian. 
Lattice observables may be obtained from stochastic time correlations. In addition, a new 
method is obtained to measure the lowest excited state (mass gap)  from the exit times of 
the stochastic process from a bounded region. In some cases the mass gap may be obtained 
at weak coupling from the theory of small random perturbations of dynamical systems. 

1. Introduction 

In recent years, numerical simulation of lattice systems has become increasingly popular 
for the study of phase diagrams, the string tension, the hadron spectrum, finite 
temperature phase transitions, etc. The procedure usually involves estimating expecta- 
tion values of observables in a d + 1 Euclidean spacetime lattice from averages over 
a subensemble of Boltzmann distributed field configurations generated by the 
Metropolis or heat bath algorithms. 

Recently, other methods have been proposed, namely the microcanonical ensemble 
[l-31 and the Langevin equation [4-61 methods. The Langevin equation has been 
used in the stochastic quantisation [7,8] context, where expectation values 

are computed generating a Markov process U ( T )  by a Langevin equation 

d u ( T ) = b ( U ( ~ ) , ~ ) d T + d w ( T )  (1.2) 
(with b = S S / S U  and W (  7 )  a Gaussian random variable) and using 

which holds whenever the process is ergodic. T is an auxiliary time (computer time 
in actual calculations) not be be confused with physical time for the lattice system. 
The state space of the process U(T) is the space of field configurations on the d + 1 
Euclidean lattice. 
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There is, however, another way to use the Langevin equation for lattice studies. 
This time one considers a lattice in d-dimensional space (not in d + 1 spacetime) and 
a process U ( s )  defined on the space lattice and evolving in the time parameter s. U (  t )  
is a Markov diffusion obeying a stochastic differential equation as in (1.2) with a drift 
b( U ( s ) ,  s )  chosen in such a way that the stationary probability density of the process 
coincides with the probability density of a quantum state. Furthermore the multitime 
correlations of the Markov process correspond to Euclidean quantum correlations, in 
a sense to be described below. For example, if 4,) = exp( R +is) is the ground state 
of the Hamiltonian, a drift proportional to E ( R + S )  (where E is the electric field 
operator) describes the ground state process. Let us describe briefly the stochastic 
formulation that we will be using, in the context of the Schrodinger equation. 

Let 4 (  t, x )  be a solution to the Schrodinger equation 

h 2  
2m 

iha ,4  = - - A 4 +  V ( X ) ~ .  

The position probability density p (  t, x )  = i + ( r ,  x)l' obeys the equation 

where 

h a  h a  
b k  = - 7 In( 44*) +- 7 In - = U( t ,  x) + u (  t ,  x ) .  

2m ax 2im ax (:*) 
Associated to the (Fokker-Planck) equation (1.5) is a stochastic differential equation 
(SDE)  

d X , = b d s + ( h / m ) d W , .  (1.7) 

The invariant probability density of the stochastic process associated to this SDE 

coincides with the position probability I4(t ,  x)l' for each t. Therefore the quantum 
mechanical (QM)  expectation in the state 4 of' any function of the coordinates will 
coincide with the statistical expectation on the process 

Ef(X,) = j f ( x ) p ( x )  d " x =  (4 , f4) .  (1 3) 

When 4 is a stationary process expectations involving multitime correlations also have 
a QM interpretation. Consider the two-time correlation 



Stochastic mechanics of Abelian lattice theories 6413 

where E is the energy of the stationary state 4. Similar expressions hold for the general 
multitime correlations on the stationary process. For example 

(1.10) 

We may therefore say that the process (1.7), although formally obtained from a real-time 
Schrodinger equation, actually describes Euclidean evolution and Euclidean correla- 
tions in the precise sense of (1.9) and (1.10) (for a stationary 4). 

The stochastic differential equation (1.7), related to the Schrodinger equation (1.4), 
is formally similar to the equation of the Finyes-Nelson [9, 101 stochastic formulation 
of quantum mechanics. However, at no point have we used Nelson's quantisation 
procedure, nor is any identification made of the (stochastic) time s in ( 1.7)-( 1.10) with 
real physical time. 

The fact that the multitime correlations are associated to Euclidean-like matrix 
elements and  not to real time correlations (nor to results of repeated physical measure- 
ments) has, in the past, been a source of confusion in the interpretation of stochastic 
mechanics [ l l ,  121. However, it is this very Euclidean nature with its time-decaying 
exponentials that makes the correlations perhaps even more useful to extract physical 
quantities like the spectrum of excitations above the state 4 with quantum numbers 
controlled by f (see 0 3). 

In this paper and elsewhere we have used the stochastic process (1.7) merely to 
compute Euclidean correlations and eigenvalues. In this way all quantities that are 
computed have exactly the same interpretation as in conventional quantum mechanics. 

In addition to operator matrix elements and Euclidean correlations from time 
averages the stochastic process associated to the SDE (1.7) also provides a way to 
determine eigenvalues from the distribution of exit times from a bounded region ( §  3). 

Construction of the process (1.7) is straighforward if an  eigenstate of the Hamil- 
tonian is known. If this is not the case it is possible to construct the drift directly from 
the interaction potential. This is relatively easy in the case of the ground state process. 
Let 

E ~ ( x , + ,  )f(x,)f(x,) = e c E  h " c + r  ' (f4, e - ' \  h j H f e - ( i !  hlHf4). 

t, x )  be a solution to the Euclidean Schrodinger equation 

(1.11) 

corresponding to an initial condition f ( x ) .  If f ( x )  is not orthogonal to the ground 
state &,, then the limit 

& E ( ( ,  x) lim e"/')',, 
1-x 

is proportional to 4,Jx). Consider now the following quantities associated to the 
Euclidean solution 

A 
21 m 

u,(t ,x)=-Tln 

They obey the equations 

h 1 J U E  

a t  2 m  m 
- ;G ( U 2, - L: ; ) + - Y ( t U - - v v ( .Y ) 

(1.12a) 

(1.12b) 

(1.13) 

(1.14) 
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From the asymptotic form of the solutions one obtains the drift of the ground state 
process 

b(x)  = U O ( X )  + U O ( X )  

where 

lim u E (  t ,  x )  = uo(x) 

lim uE( t ,  x )  = u o ( x ) .  

1 - I  

1 - r  

( 1 . 1 5 ~ )  

(1.15b) 

Similarly one obtains equations that, given the interaction potential, determine the 
drift for a stationary process at positive temperature T [ 131. 

In the next section we discuss the stochastic formulation of lattice gauge theories 
and in 0 3 the measurement and estimates of lattice observables using this formalism. 

2. The stochastic formulation of lattice theories 

One writes the lattice gauge theory Hamiltonians as 

where M ,  is a function of the plaquette variables and  the electric field operators ET 
are defined by their commutation relations with the link variables U, 

[ E ? ,  UP1 = &,,U,t" (2.2a) 

[ E T ,  u;]=-s,,,t"u; (2.2b) 

If G = U(1) one may use the representation E,  = -ia/ae,, U, = eie'. From the 
5" being an  element of the Lie algebra of the gauge group G. 

Schrodinger equation 

a 
i - $ ( t ,  U,) = W ( t ,  U,) (2.3) 

and its adjoint, one obtains a (Fokker-Planck) equation for the probability density 

a t  

P(S, U,) = M2. 

with U = g / d a  and a drift 

g' a 
b,=- -{log/$/+arg $}. 

a d e ,  

From this one deduces the stochastic differential equation 

de /  = b, d s  + U d U', 

with the normalisation (d W, d W , )  = 6/,, d s  for the Wiener process. 
For G = SU( N )  one may use the representation 
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to deduce the Fokker-Planck equation for p = I+( t, U,)J' 

with drift 

The resulting stochastic equation is 

with 

and 

Tr(t"[') = 6"@/2. 

Once the drift function b1 is known the lattice theory is completely determined by 
(2.6) or (2.9), from which information on the physical observables may be extracted 
by stochastic methods (0 3) .  

One is now left with the problem of finding a drift for the stochastic equations in 
such a way that the generator of the process coincides or, at  least approximates, the 
Hamiltonian. Our main concern will be the ground state process. As described in § 1 
there are two ways to obtain a drift for this process. In the first, one uses an  Euclidean 
version of the dynamical equations that determine the drift and  the asymptotic solution 
to these equations tends to the exact drift associated to the assumed Hamiltonian. The 
second method consists in using an  exact or  approximate eigenstate of the theory. 

In  general, given a lattice Hamiltonian, it is very hard to find a good analytic 
approximation to the ground state &, so that the drift can be recovered from V{log/$,l+ 
arg Go}. For example, if HKS is the usual Kogut-Susskind [14] lattice Hamiltonian, a 
variational approach to find +" seems to fare poorly. In  particular, a variational 
calculation of the mass gap [ 151 indicates that independent plaquette ansatze minimis- 
ing (HKS) seem to be far from the scaling region. Furthermore, for an exponential 
ansatz that minimises (HKS), the reconstruction algorithm [16] has been used to find 
the Hamiltonian HR for which the ansatz becomes an  exact eigenstate. The conclusion 
is that, as coupling constant functions, HR and HKs belong to distinct functional 
classes. Hence they, most probably, belong to different universality classes. 

Lattice gauge theory, considered as a regularisation device for the continuum fields, 
is, however, in the particular situation that instead of a fixed Hamiltonian, one deals 
with a whole family of Hamiltonians which are, in principle, equally good provided 
they reduce in the classical continuum limit to the Q E D  or QCD forms. By classical 
continuum limit we mean here not only the ( a  + 0, g fixed) limit, but also the limit 
that takes into account the renormalisation group a dependence of the coupling 
constants ( a  + 0, g( a )  + g* ) .  

Convergence of a lattice Hamiltonian to the continuum in one of these limits does 
not guarantee, of course, that the whole physical content of the continuum theory is 
recovered. That would require convergence of the Green functions as well. 
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Using the freedom of choice for the lattice Hamiltonian one may turn the variational 
argument around and, given, for example, an independent plaquette ansatz d(  y )  = 
n , f p ( y ( g ) ) ,  instead of looking for the set of parameters y ( g )  that minimises ( H K S ) ,  
look for parameters y ( g )  such that the Hamiltonian H ( y )  reconstructed [16] from 
+(?) has the same continuum limit as HKs. For H (  y ) ,  the state d(  7 )  would then be 
an exact eigenstate and the drift that one computes from O{logl+(y)l+arg d(7))  an 
exact drift of a process for which the generator= H ( 7 )  has the desired classical 
continuum limit. 

In this method, to obtain a drift for the stochastic equation (2.6) we would attempt 
to find a state J, which is an exact zero-energy eigenstate of a Hamiltonian of the form 
(2.1) reducing to 

(2.10) 

under the replacement 

e, being the sum of oriented angle variables on the boundary of the plaquette p and 
d the (space) dimensionality of the lattice. 

When the classical ( a  + 0) limit is taken, one should beware of the behaviour of 
g-dependent contributions in the O( a d + ' )  term of (2.10), because in asymptotically 
free theories g + O  as a + O .  

We discuss here only the U ( l )  case. For simplicity, one looks for a state of the 
independent plaquette product form 

(2.12) 

From the reconstruction algorithm [ 161, one knows that + is a zero-energy eigenstate 
of the Hamiltonian 

where 

(2.13a) 

(2.136) 

The sum is over the plaquettes that contain the link 1 and 77; is a + or - sign which 
depends on the orientation of the link 1 in the plaquette p .  

We analyse now the small-a behaviour of the terms L: and [E, ,  L,] in (2.13). With 
the replacement (2.1 l a )  one obtains for (g2 /2a ) (  L;), 

(2.14) 

Because of the signs 7; the sum is over terms of the form a ( a B / a x )  for small a and 
if the space derivatives of the (magnetic) field B are finite the leading contribution is 
O(ad+')  and vanishes in the continuum limit. However, if one requires d'(1) =0,  no 
assumption is required on the local finiteness of a B / d x .  Also this procedure is more 
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satisfactory because one avoids inverse powers of g coming from the function 4 (see 
below) which hinder the convergence for theories where g (  a )  + 0 as a + 0. 

For (-ig2/2a)[E,, L,] one obtains 

(2.15) 

Hence, one can recover the form (2.10) by requiring d’(1) =0,  qb”(1) = 1/6g4. The 
simplest state that satisfies these requirements is 

+ = n exp{sin4(&,)/3g4}. (2.16) 
P 

It is an exact zero-energy eigenstate of the Hamiltonian 

(2.17) 

which has the same (naive) continuum limit as the standard [14] U ( l )  lattice Hamil- 
tonian (see appendix 1). 

From the state (2.16) one computes the drift 

(2.18) 

which will be used in the computations of 0 3. 
Until now, we have referred to the CL state simply as a zero-energy eigenstate of 

HR. Can one guarantee that it is the ground state of HR? If  the domain of self- 
adjointness of L, is the whole of L’, then 

(2.19) 

being a positive operator, + must be a lowest-energy eigenstate. If  the domain of L, 
is a proper subspace of L2,  HR may have eigenstates of energy lower than $+. For a 
finite lattice with N links, Ll of (2.136) is a bounded operator in L 2 ( R N ) .  Therefore, 
barring pathologies in the N + w  limit, + is indeed a ground state for HR. On the 
other hand, in the a + 0 limit, the constant term in the right-hand side of (2.15) vanishes. 
Up to terms of order a d + ’ ,  the Hamiltonian HR converges to a positive operator. This 
is a necessary condition for convergence of CL to the ground state of the continuum 
theory. 

We have used a ground state ansatz to construct the drift of a stochastic equation, 
from which physical information is then obtained using the methods described in the 
next section. One might wonder whether this the most efficient way to extract physical 

*The  reader who doubts the need for these precautions should convince himself by reconstructing a 
Hamiltonian H ’  from the first excited state of the harmonic oscillator. The result is 

H’ = -$ld2/dx’) + (x2 /2 )  -5 
but the domain of L is spanned by the odd eigenvalues only. In this subspace H ’  is ii positive operator, 
but of course in L’, H’  has an eigenstate I&, of smaller energy ( H ’ & =  -&). 
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information from the ground state and whether having the ground state one has not 
already the exact solution to the theory. 

In quantum mechanics, given the ground state cLo, one may always reconstruct the 
potential from V ( x )  = h'hcLo/(2m40) - Eo. On the other hand, for sufficiently well 
behaved potentials, one may prove the existence of a unique ground state. In  this 
sense, to have the interaction potential or the ground state is, in principle, the same. 
An exception is, of course, the case where the field algebra is such that all eigenvectors 
of the Hamiltonian can be obtained from the ground state by application of the 
appropriate raising operators, as in the case of non-interacting harmonic oscillator 
modes. This is not the case for the lattice Hamiltonians, and one should think of the 
exact ground state construction as just another way to define the interaction. 

The stochastic differential equation (2.6) and the drift (2.18) define a stochastic 
model for U( 1) lattice gauge fields. This model is not unique because there are states, 
other than (2.16), which by reconstruction lead to Hamiltonians with the same classical 
continuum limit as H K S .  

3. Stochastic methods for the measurement of lattice observables 

Consider a stochastic process X ,  constructed from an  eigenstate 4 of the Hamiltonian. 
If the drift obtained from 4 is such that the process is positively recurrent, then 141' 
is the stationary probability distribution of the process. 

Of particular interest to us here is the probabilistic identification of time averages 
and 42 d"x averages. This means that a matrix element of an  operator or a Euclidean 
time correlation may be obtained from 

where the equality signs should be interpreted in a probabilistic sense. 
Because our main interest is the ground state process, we will not deal with cases 

where 4 is the wavefunction (with zeros) of an  excited state of energy E,,. In such a 
case the singularities in the drift require careful mathematical treatment [ 171 and, the 
zeros of 4 acting as barriers for the process, one may decompose this one into separate 
ergodic components. 

In this paper we consider only the ground state process. The computation of lattice 
observables from a stochastic model (in the sense of § 2) is made by applying (3.1) or 
(3.2). For example for the Wilson loop, because in the Hamiltonian temporal gauge 
time-like links carry the unit element of the group, one obtains simply a (Euclidean) 
time correlation of two string operators. 

, ri- 

W ( L , r ) =  Iim J U ;  . . .  U ; ( 7 + s ) U I  . . .  U,(s)ds.  (3.3) 
T - x  T 0 

Mass gaps may likewise be obtained from the decay of the time correlations of the 
appropriate lattice functions. In general, everything that can be computed in Euclidean 
quantum mechanics (using, for example, a spacetime lattice and  the Monte Carlo 
method) can also be computed here from large time averages over the evolving 
stationary process. 
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In addition there is at least one useful new tool that is brought to these problems. 
This is the evaluation of mass gaps from the technique of exit times. This is a 
consequence of the probabilistic characterisation of the smallest positive eigenvalue 
of elliptic operators. In special cases the theory of small random perturbations of 
dynamical systems [ 18, 191 may also be applied to estimate the weak coupling behaviour 
of the mass gap. 

New methods to measure the mass gap in lattice theories are welcome because in 
the time correlation technique one must use very large times to eliminate the contamina- 
tion from the excited states. For large coupling constants this is not a serious difficulty. 
For small couplings, however, the exponential decrease of the energy levels makes the 
large-time slope, in the correlation function, very hard to extract from the noise. 

In the remainder of this section we will concentrate in the description of the method 
of exit times to measure the mass gap and in its application to the U ( l )  stochastic 
model derived in § 2 .  

Consider a stochastic differential equation (SDE) 

d X , =  b ( X , ) d s + a ( X , ) d W , .  

There is a very useful relation between SDE of the diffusion type and elliptic 
operators. Let G be the generator of the Markov process associated to the SDE 

(3.4) 
TI0 S 

If  u ( x )  is a smooth function, G has a differential representation. Computing the 
stochastic differential d u (  X,)  by Ito’s formula one obtains 

n a 1 “  a’ 
2 ‘ . / = I  a x ‘ a x J  ax’ 

+ C b ’ ( x )  - G = -  C u ” ( x ) -  (3.5) 

where 

a ” ( x )  = 1 a ’ k a ’ k  = (craT)”. 

c a ” ( x ) A , A ,  3 0  

k 

The symmetric matrix ( a ” )  is non-negative definite; 

1. I 

for any real A. 
Conversely if a non-negative matrix a ” ( x )  and a vector field b ’ ( x )  with sufficiently 

smooth properties are given, one can construct a diffusion process. In particular, a 
representation of the form a ” ( x )  = ((+cT)’/ with u’,(x) satisfying a Lipschitz condition 
is possible whenever the a” are twice continuously differentiable or if det(a”(x))  f 0 
it suffices that they satisfy a Lipschitz condition. Consequently there is a large class 
of operators of type (3.5) which have a corresponding diffusion process. The diffusion 
process is determined essentially uniquely by its differential generator in the sense that 
any two processes with a common differential generator induce the same distribution 
in the space of trajectories (also called sample paths). I t  means that although the 
trajectories may not be the same, expectation values of observable quantities will 
coincide. 

The relation between diffusion processes and elliptic operators leads to many useful 
results and is the main reason why stochastic methods are a useful tool in quantum 
theory. 
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The characterisation of eigenvalues of the elliptic operator G is related to the 

+ c ( x ) + ( x )  = f ( x )  (3.6) 

on a bounded domain D with boundary condition 4 ( ~ ) l , , , ~ = , y ( x ) .  c ( x ) ,  f ( x )  and 
~ ( x )  are bounded continuous functions and c ( x )  S 0. For G one assumes Xa”(x)A,A,  3 
kCA f , k > 0 plus a Lipschitz condition on the coefficients. Then the unique solution 
to (3.6) is 

stochastic representation of the solutions to the Dirichlet problem 

(3.7) 

where T = T ( O  E fl) = inf{ t : X ,  rl D }  is the first exit time of the process from the domain 
D. When c ( x )  = A, f ( x )  = ~ ( x )  = O  one is led to the eigenvalue problem 

- @ ( X I  = A 4 ( x )  4 ( x ) l x m  = 0. (3.8) 

From (3.7) it follows that the smallest positive eigenvalue A. of -G is 

A. = sup{A z 0; sup E, eAr < C O } .  
x t D 

(3.9) 

Consider now an Hamiltonian HR of the form (2.19) associated to the ground state 
IC, (i.e. LI = -iE,i,b/i,b). We perform the transformation HR+ (L-’HR$ which makes 
sense because IC, in (2.16) has no zeros. This is a unitary transformation from an 
operator defined in L’(ll/ de,)  to one defined in L2(IC,’lll de,). One obtains 

i ,b-’HRi,b=-C---b- U* a’ a 
I 2 ae: ‘ae ,  (3.10) 

where the coefficients are precisely the diffusion and the drift of the stochastic equation 
(2.6). Comparing with (3.5) one concludes that -+-’HR+ is the generator of the 
Markov process and one may use (3.9) to obtain the lowest positive eigenvalue of the 
Hamiltonian (mass gap). 

One way to use this equation is by direct numerical simulation of the SDE (2.6). 
In numerical simulations, because sizes are necessarily small, it is useful to have 
periodic boundary conditions to avoid contamination from boundary effects. Our 
simulations were on 20’, 143 and lo3 (space) lattices with periodic boundary conditions. 

For the application of (3.9), there are two suprema to consider. First there is the 
supxtD E ,  eAT. Clearly, the expectation value grows when a large number of long exit 
times are obtained. Therefore we have replaced the actual finding of this supremum, 
which would be very time consuming, by the choice of the most stable fixed point of 
the classical evolution as the initial point in each measurement. This is fixed, assigning 
each link a value *7r/4 (in d = 2) or *7r/4 for x, y links and *7r/2 for z links (in 
d = 3) in such a way that all plaquette angles are *T.  Such a point is in d = 2 the only 
stable fixed point of the classical system and for d = 3 is also the maximum of the 
ground state wavefunction i,b. 

The boundary aD of the Dirichlet problem is fixed in a symmetrical way around 
the fixed point, i.e. when during the course of time evolution, le,( t )  - O,(O)l > H in any 
one of the plaquettes, a boundary hit is counted and the lattice is reset. Running until 
around 1000 hits ( d  = 2) or between 500-1000 depending on g ( d  = 3) are counted, one 
obtains a distribution of exit times as in figure 1. The A supremum is estimated by 
finding the coefficient of the exponential decay of the distribution upper tail. The 
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Figure 1.  Exit time distribution at  g = 0.8, d = 2; 1000 events ( *  = t w o  events).  

results are shown in figures 2 and 3. The error bars reflect not only the statistical error 
in the x2 fits but also an estimate of systematic errors obtained by analysing the data 
with different cuts of the upper tail. 

In a different run, we also obtained (cos 0,) in a statistically stabilised lattice 
evolving according to the Langevin equation (2.6) (figures 4 and 5 ) .  This clearly shows 

1 I I I 

2 4 6 8 
1 IgL 

Figure 2. Lowest eigenvalue (mass g a p )  estimated from the exit times; d = 2. 
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Figure 3. Lowest eigenvalue (mass gap) estimated from the exit times; d = 3 

-0 .2  t 
-0 4 i- 

the crossover from the strong to the weak coupling regimes, which should be compared 
with the behaviour of the mass gaps in figures 2 and 3. 

At weak coupling the diffusion coefficient v = g / J a  in the stochastic differential 
equation (2 .6 )  becomes small. This implies that one may use the theory of small 
random perturbations of dynamical systems [ 18-21] which, through the stochastic 
mechanics formulation, becomes a tool to deal with non-perturbative effects in quantum 
mechanics. (For a nice application to tunnelling problems, see [22].) 
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To apply the theory of small random perturbations as developed in [ 191 one needs 
an elliptic operator where the coefficient of alae, is independent of the small parameter 
( g  in this case) (cf equation (4.1) of [19]). Because the drift obtained in (2.18) is 
proportional to g-2 ,  we consider, instead of HR,  the operator a g 2 H R  and the eigenvalue 
problem 

( t , ! - ' ag 'H ,+ )u  = Au (3.11) 

in a domain D in R"1 ( n ,  = number of links) with C' boundary aD and a boundary 
condition U = 0 in aD. 

From the asymptotic results in the theory of small random perturbations of dynami- 
cal systems one has bounds on the behaviour of the smallest positive eigenvalue A" at 
weak coupling (theorem 1 1 . 1  of [19]) 

fi { - 2 g 4  log Ao(g) }  S V* 

lim { -2g4  log A o ( g ) }  2 V, 
s-0 

g-0 

( 3 . 1 2 ~ )  

(3.126) 

where V* = max{ V,, . . . , Vr} ,  V, = min{ V,, . . . , Vr}, r being the number of stable limit 
sets { K , ,  i = 1 ,  . . . , r }  of the classical deterministic system 

d 0  = ag'b d t  (3 .13 )  

and V, = I (x, aD)  the infimum of the functional 

(3.14) 

taken over all paths from the neighbourhood of the classical equilibrium set K i  to the 
boundary of the domain D. In simple cases all these quantities can actually be 
computed. Their meaning will become clear in the application described below. 

A basic assumption in the theory is that for the deterministic system (3.13) there 
exists a finite number of disjoint compact sets K , ,  . . . , K ,  in D such that the w-limit 
set of each soIution of (3.13) with e(0) in D\(u:=, K , )  is contained in one ofthe sets K , .  
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To check this condition and  determine the set { K , }  in the 2 +  1 U ( l )  theory we d o  
a maximal gauge fixing. In  the two-dimensional space lattice one fixes to the identity 
(e, = 0) all group elements attached to horizontal links and also those along a particular 
fixed vertical line. It is easy to see that this can be achieved by a time-independent 
gauge transformation in any finite open N x N lattice. With this choice, the drift (2.18) 
becomes 

b, =i{sin(O, - t ~ ~ - ~ ) [ i  -cos(e,, - e,-,)l-sin(e,+, -e,)[l  -cos(O,,+, -@,,)I} (3.15) 

where e,,, en+, denote the angle variables in two vertical links separated by one lattice 
spacing along the horizontal direction. For the open N x N lattice that we are 
considering, (3.15) holds for all vertical links except for those in column N which 
contain only one term in b, (the links in column 0 were gauge fixed to zero and are 
not dynamical variables). 

The classical equilibrium sets are the fixed points of (3.13) defined by b = 0. In 
particular, b, = 0 implies ON - @ N - l  = 0, * x .  Using (3.15) for the other links and the 
condition Bo = 0 implies that one has fixed points of (3.13) for all vectors 6 for which 
the components are On = O  or x (defined conventionally in the range (0, x ) ) .  They 
will be stable fixed points only if all eigenvalues of the matrix Idb/aOl are negative at 
that point. It is easy to see from (3.15) that whenever en = O n + ,  the matrix has a zero 
eigenvalue which second-order analysis reveals to be associated to an  unstable direction. 
The only stable fixed point 6 for which all eigenvalues are strictly negative turns out 
to be the point for which the components alternate between 0 and  x, i.e., A,, = On - O n - 1  = 
*T. When there is only one stable fixed point in the deterministic system (3.13) we 
are in a situation where the inequalities of (3.12) become an  equality (corollary 11.2 
of [191) 

l im{-2g410gh,(g)}= V =  Z(8,dD).  
g - 0  

(3.16) 

Although there is only one stable fixed point one should take notice that the 
unstability directions of the other fixed points are degenerate. This means that in a 
numerical measurement of relaxation times, for example, trajectories with initial 
conditions near such a fixed point will take a long time to move away, mainly when 
the diffusion is weak (weak coupling). 

From (3.11) it follows for the smallest positive eigenvalue mg of HR (mass gap) 

amg - g-* exp( - v , 1 2 ~ ~ )  (3.17) 

at weak coupling. 
To try to estimate the constant V, one should define the domain and  the boundary 

for the eigenvalue problem. This we d o  in a maximally symmetric way around the 
stable fixed point e=  {e: 10, - On-,/ = 7~ Vn}, in the sense that when moving away from 
6 one hits the boundary dD whenever any one of the differences 8, - On-, reaches 
zero (mod 27r). 

V is the infimum of the functional (3.14) for paths between the attractive fixed 
point and the boundary. The Euler-Lagrange equation for this variational problem is 

a 
I a 6, 

& - a g ' b , = - x  (e ,  -ag'b,,)-(ag'b,). (3.18) 

Consider a path parametrised in such a way that e, = ktag'b,, i.e. a path composed of 
pieces along which one either follows the classical flow or exactly opposes this flow. 
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In  the first case (3.18) is automatically satisfied and in the second one obtains 

where the second equality follows from the fact that b, - (d /aO/)  In $. The conclusion 
is that a path where 6, = *b,(e) is a stationary point of the functional I .  

In  the case that we are studying we consider ii path against the classical flow from 
the attractive fixed point to the boundary and  obtain 

V = inf 4 1 ag'b,( 0 )  de ,  = min 4g'{ln $(e) - In  $ ( d o ) } .  (3.19) 

In d = 2 the minimum is obtained when e and 8 E aD differ by one plaquette, hence 

v'" =; (3.20) 

a result which together with (3.17) is quite consistent with the results of our numerical 
simulations, namely VL:,,, = 1.32 * 0.07. 

A similar analysis is possible for the three-dimensional case. Given an arbitrary 
field configuration 2 on a three-dimensional lattice it is always possible by a gauge 
transformation to make U, = 1 ( 8 ,  = 0) in all links along the z-axis. Now we pick a 
particular xy plane and in this plane one uses the remaining gauge freedom to transform 
to the identity all links along the x direction and also those of a particular fixed line 
parallel to the y axis. 

One denotes by g , ( H  the gauge transformation that performs this transformation 
on the configuration. 

Equation (3.13) being a gradient dynamical system its attractive fixed points 
correspond to the maxima of In $. They are therefore the set of points for which 
0, = * T ,  There are many configurations 2:' that are attractive fixed points. However 
it is easy to see that for any two such configurations 

/ I 

g ~ ~ ( ~ ~ ' ) ~ ~ ) = g o ( ~ ~ I ) 2 ~ l  

i.e. all attractive fixed points are gauge equivalent. Modulo a gauge transformation, 
the domain D for the eigenvalue problem is symmetric around the attractive fixed 
points in the sense that the boundary aD is reached whenever any one of the reaches 
zero (mod 2 ~ ) .  

Using the gauge transformation go, defined above, on a boundary configuration 
2',,D it is easy to see that for d = 3 the minimum of (3.19) is obtained when YT and 
YaD differ by 4 plaquettes. Therefore 

1 (3.21) 

a result which is also consistent with the numerical results in the weak coupling region. 
Both the numerical results and the analytical estimates at weak coupling show the 

reliability of the method of exit times as a mass gap evaluation technique. 
Our analysis implies that the U ( 1 )  stochastic model defined by the drift (2.18) 

scales like exp(-a /g ' )  at weak coupling. 
The model defined by (2.18) leads therefore to a non-trivial universality class 

apparently different from the one formally defined by perturbation theory. The fact 
that the Hamiltonian of the model has the same classical a + 0 limit as QED, shows 
that in gauge theories there may be distinct models which, although associated to the 
same classical continuum limit, nevertheless belong to different universality classes. 

v '31  = 



6426 S M Eleute'rio and R Vilela Mendes 

The exploration of other models possibly associated to different universality classes 
is of interest to clarify the meaning and the structures underlying the gauge theories 
formally defined in the continuum. Some preliminary results obtained recently indicate 
that at least another universality class can be obtained by reconstructing the non- 
vanishing magnetic terms (in the a + 0 limit) from the L,L, term of (2.19), as opposed 
to the commutator [E , ,  L,] as in the model of (2.18) (cf appendix). 
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Appendix 

It is instructive to compare the a + 0 limit of the Hamiltonian (2.17) which has $ of 
(2.16) as a zero-energy eigenstate with the a + 0 limit of the usual (Kogut-Susskind 
[ 141) lattice Hamiltonian HKS 

Under the replacement (2.1 1 a )  the relevant terms become 

Hence the a -+ 0 limits of H ,  and H , ,  coincide. The leading terms also coincide 
in the a + 0, g + 0 limit. One should be aware however of the remark made in the text 
that to prove convergence to the same continuum limit of the theories based on HR 
and HKs the agreement of the (naive) a - 0  limits shown above is not enough. 
Something like a proof of convergence of the Green functions to the same limit would 
be required. 

Notice also that all the magnetic terms that d o  not vanish in the a -+ 0 limit of HR 
come from the commutator term [E , ,  L,].  
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